

FY01 Focus Areas

- Prioritize investments to achieve Agency goals
 - In-Space propulsion, nuclear power/propulsion and radiation mitigation
- Improve understanding of the Earth's Neighborhood
 - Refine concepts and science needs
- Improve definition of the robotic/human partnership in space
 - Capture the state-of-the-art for future robotics
 - Quantify and compare robotic/human performance in projected operations
 - Increase understanding of critical Bioastronautics issues
- Advance Technology for Human/Robotic Exploration and Development of Space (THREADS)
 - Discover innovative concepts and technology
 - Show progress in key technology areas
- Expand leveraging activities
 - Active investments from; NIAC, RASC, SBIR, SSP
 - DoD opportunities through Technology Area Review and Assessment (TARA), Advanced Concept Technology Demonstrations (ACTD), etc.
 - Education; Steckler Trust

Agency Investments Prioritized In-Space Propulsion Technologies

Process

• Requirements/Goals Established by NASA **Enterprises**

 Technology options identified

 Systems concepts developed

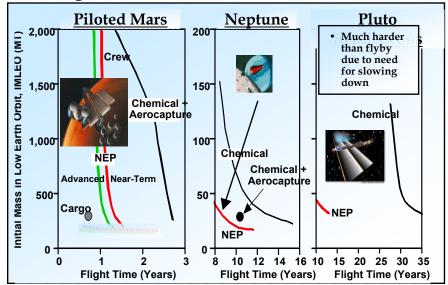
Systems Concepts Compared

 Technologies Prioritized

Code 5 Filority
Code M Priority

Codo C Drionita

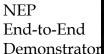
Code M and S


Hornized III-opace i Topulsion recimologics						
s	In-Space Propulsion Technology	High Priority	Medium Priority	Low Priority	High Payoff/ High Risk	
A	Advanced Chemical					
s	Aerocapture					
	Solar Electric Propulsion (SEP					
	Nuclear Electric Propulsion (NEF					
	Solar Sails					
	Solar Thermal					
	Nuclear Thermal Propulsion (Bimodal)					
	Plasma Sails					
y	Momentum Exchange Tethers (MXER)				January.	

Agency Investments

Nuclear Power and Propulsion

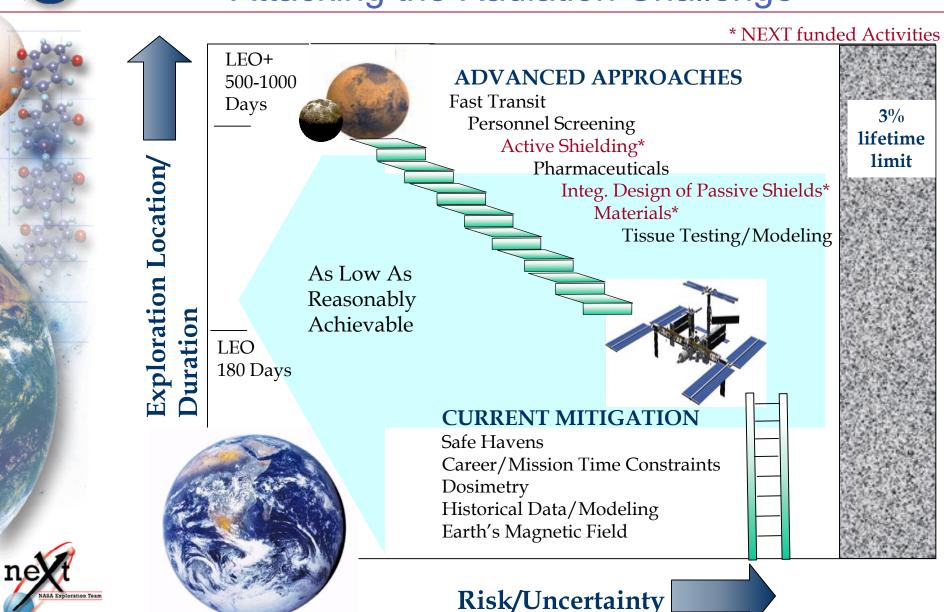
- NEP identified as high-priority in space propulsion technology for human and robotic exploration
 - Enables very high delta-V missions
 - Offers abundant power at destination
- Evolutionary approach to fission propulsion proposed (3 phases)
 - 10-500 kW NEP and surface
 - Up to 10 MW NEP, solid-core NTR
 - Up to 100 MW NEP
- Enables non-Keplerian orbits that can avoid hazardous regions (e.g. ring particles)
- Enables complex, long duration missions



Agency Investments Nuclear Power and Propulsion



- Refurbished 2 kWe Brayton testbed and began high power Brayton system design studies with industry
- Conducted Heat Pipe reactor-to-Stirling power conversion integrated test
- Conducted Stirling engine-to-Hall thruster integrated test
- Fabricated and tested plasma injector for compact toroid high power plasma thruster
- Completed design and initial fabrication stages of 50kWe Hall thruster
- Conducted mission/trajectory design and analysis for high and low thrust nuclear propulsion systems
- •Prepared conceptual designs of NEP and NEP/NTR vehicles for human and robotic science missions



Agency Investments Attacking the Radiation Challenge

Agency Investments NEXT Radiation Research

Recommendations for effective dose limits (Sv*) for 3% excess cancer fatality for 10 year careers

	Female	<u>e</u>	Male	
Age	1990	2000	1990	2000
25	1.0	0.4	1.5	0.7
35	1.8	0.6	2.5	1.0
45	2.5	0.9	3.2	1.5
55	3.0	1.7	4.0	3.0

Age at First Mission	No. of 180-day LEO missions**		
	<u>Female</u>	<u>Male</u>	
25	0	1	
35	1	1	
45	1	2	
55	2	3	

Considerations

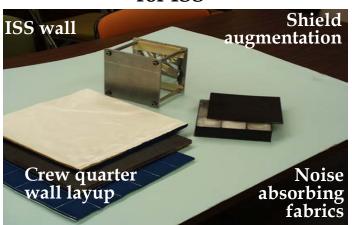
- Costs of training
- Costs of crew replacement
- Career corps vs one-mission astronauts

^{* 1} SV = 100 REM. 1 REM = measure of effective biological damage as determined by absorbed dose x quality factor

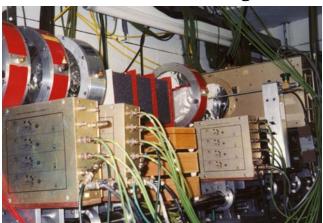
^{**} Administrative limits: 1% risk excess cancer risk; 0.2 Sv/mission; no uncertainty assumed.

Agency Investments Shielding Materials

Multidiscipline Networked Immersive 3D Simulation and Optimization


Mini Magnetospheric Plasma Propulsion

Brookhaven National Lab (BNL)


Polyethylene Augmentation for ISS

Radiation Absorbing Materials

Habitat and EVA Garment Material Testing

